ПАПIBIA UПIVERSITY

OF SCIEПCE AחD TECHחOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: APP601S	COURSE NAME: ANALYTICAL PRINCIPLES AND PRACTICE
SESSION: JULY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR JULIEN LUSILAO
MODERATOR:	PROF OMOTAYO AWOFOLU

INSTRUCTIONS

1. Answer ALL the questions in the answer book provided.
2. Write and number your answers clearly.
3. All written work MUST be done in blue or black ink.

PERMISSIBLE MATERIALS

Non-programmable calculators

ATTACHMENTS
List of useful tables, formulas and constants

THIS QUESTION PAPER CONSISTS OF 10 PAGES (Including this front page and attachments)

Question 1: Multiple Choice Questions

Choose the best possible answer for each question.
1.1 Which of the following glassware is not recommended for accurate measurements of volumes?
(A) A graduated cylinder
(B) A volumetric flask
(C) A volumetric pipette
(D) A measuring pipette
1.2 A chemical or physical principle that can be used to study an analyte is called
(A) A technique
(B) A procedure
(C) A protocol
(D) A method
1.3 The ability of an analytical balance to measure the smallest detectable increment of mass is called
(A) The balance accuracy
(B) The balance precision
(C) The balance sensitivity
(D) None of the above
1.4 In statistics, the precision of repeated measurements is characterised by
(A) The standard deviation
(B) The relative standard deviation
(C) The variance
(D) All of the above
1.5 An amphoteric substance
(A) Has neither acid or base properties
(B) Turns litmus paper red and blue
(C) Is insoluble in base, but dissolves in an acid
(D) Reacts with both an acid and a base
1.6 Consider the equilibrium reaction

$$
\begin{equation*}
4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=-1268 \mathrm{~kJ} \tag{2}
\end{equation*}
$$

Which change will cause the reaction to shift to the right?
(A) Increase the temperature
(B) Decrease the volume of the container.
(C) Add a catalyst to speed up the reaction.
(D) Remove the gaseous water by allowing it to react and be absorbed by KOH .
1.7 Sodium nitrate, heated in the presence of an excess of hydrogen, forms water according to the two-step process

$$
\begin{gathered}
2 \mathrm{NaNO}_{3} \rightarrow 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2} \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

From the reactions above, how many grams of sodium nitrate are required to form 9 grams of water?
(A) 21.3
(B) 42.5
(C) 69.0
(D) 85.0
1.8 What is the molarity of the sulphate ion in a solution prepared by dissolving 17.1 g of aluminium sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, in enough water to prepare 1.00 L of solution? Neglect any hydrolysis.
(A) $1.67 \times 10^{-2} \mathrm{M}$
(B) $5.00 \times 10^{-2} \mathrm{M}$
(C) $1.50 \times 10^{-1} \mathrm{M}$
(D) $2.50 \times 10^{-1} \mathrm{M}$
1.9 A reaction for which $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$ is most likely to have which of these thermodynamic properties?
(A) The reaction cannot be spontaneous at any temperature.
(B) The reaction will tend to be spontaneous at low temperatures.
(C) The reaction will tend to be spontaneous at high temperatures.
(D) The spontaneity of the reaction will be independent of temperature.
1.10 Consider the equilibrium reaction

$$
\mathrm{Cd}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(\mathrm{aq})
$$

The equilibrium constant of the reaction is called
(A) Overall formation constant
(B) Stepwise formation constant
(C) Cumulative formation constant
(D) Both (A) and (C)

Question 2

2.1 A group of scientists used radioactive isotopes to date sediments from lakes and estuaries. To verify this method, they analysed a ${ }^{208} \mathrm{Po}$ standard known to have an activity of 77.5 decays $/ \mathrm{min}$ and obtained the following results.

77.09	75.37	72.42	76.84	77.84	76.69
78.03	74.96	77.54	76.09	81.12	75.75

Determine whether there is a significant difference between the mean and the expected value at $\mathrm{a}=0.05$.
2.2 Two analytical chemists have reported a method for monitoring the concentration of SO_{2} in air. They compared their method to the standard method by analysing urban air samples collected from a single location. Samples were collected by drawing air through a collection solution for 6 min . Shown here is a summary of their results with SO_{2} concentrations reported in $\mathrm{mL} / \mathrm{m}^{3}$.

standard	21.62	22.20	24.27	23.54
method:	24.25	23.09	21.02	
new	21.54	20.51	22.31	21.30
method:	24.62	25.72	21.54	

Using an appropriate statistical test determine whether there is any significant difference between the standard method and the new method at $a=0.05$.

Question 3

3.1 A standard sample contains $10.0 \mathrm{mg} / \mathrm{L}$ of analyte and $15.0 \mathrm{mg} / \mathrm{L}$ of internal standard. Analysis of the sample gives signals for the analyte and internal standard of 0.155 and 0.233 (arbitrary units), respectively. Sufficient internal standard is added to a sample to make its concentration $15.0 \mathrm{mg} / \mathrm{L}$. Analysis of the sample yields signals for the analyte and internal standard of 0.274 and 0.198 , respectively. Report the analyte's concentration in the sample.
3.2 Serum containing Na^{+}gave a signal of 4.27 mV in an atomic emission analysis. Then 5.00 mL of 2.08 M NaCl were added to 95.0 mL of serum. This spiked serum gave a signal of 7.98 mV .
(a) What is the actual concentration of Na^{+}spiked in the sample?
(b) Find the original concentration of Na^{+}in the serum.
(c) What calibration method has been used here?
(c) What calibration method has been used here?
(d) Briefly explain your choice of the calibration method.
(e) When would you recommend the use of this calibration method?

Question 4

4.1 Given the following unbalanced redox reaction:

$$
\mathrm{ClO}^{-}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{IO}_{3}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \text { Basic solution. }
$$

(a) Write the balanced oxidation and reduction half reactions as well as the overall reaction.
(b) Calculate the standard state potential $\left(E^{0}\right)$ of the reaction $\left(E_{c l 0-/ C l-}^{0}=+0.890 \mathrm{~V} ; E_{103-/ 1 /}^{0}=+0.257 \mathrm{~V}\right)$
(c) Calculate the equilibrium constant (K) of the reaction.
4.2 Calculate the ionic strength of a 0.050 M NaCl solution.
4.3 Calculate the pH of the following acid-base buffer: 5.00 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 5.00 g of NaHCO_{3} diluted to $100 \mathrm{~mL}\left(K_{a}\left(\mathrm{HCO}_{3}{ }^{-}\right)=4.69 \times 10^{-11}\right)$.
4.4 Write the charge balance and mass balance equations for a 0.10 M NaCl solution.

Question 5

5.150 .0 ml of 0.1 M NaCN is titrated with $0.1 \mathrm{M} \mathrm{HNO}_{3}\left(K_{a}\right.$ for $\left.\mathrm{NaCN}=6.20 \times 10^{-10}\right)$.
(a) Write the balanced reaction of the titration (only show the ions participating in the reaction).
(b) Calculate the volume of HNO_{3} added at the equivalence point.
(c) Calculate the pH after addition of the following volumes of the titrant
(i) 0.0 mL of added HNO_{3}
(ii) 25.0 mL
(iii) 50.0 mL
5.250 .0 mL of 0.0250 M KI was titrated with $0.0500 \mathrm{M} \mathrm{AgNO}_{3}\left(K_{s p}(\mathrm{AgI})=8.3 \times 10^{-17}\right)$.
(a) Write the reaction involved in the titration (show only the ions participating in the reaction).
(b) Calculate the value of equilibrium constant for the reaction in (a).
(c) Calculate the volume of titrant added at the equivalence point.
(d) Calculate pl for the following volume of added AgNO_{3}
(i) 10.0 mL
(ii) 25.0 mL
(iii) 30.0 mL
5.3 (a) What is an indirect gravimetric analysis?
(b) Give two important attributes of precipitation gravimetric analysis.

Data Sheet
$t_{\text {calculated }}=\frac{|\bar{x}-\mu|}{s} \sqrt{N} \quad t_{\text {calculated }}=\frac{\bar{d}}{s_{d}} \sqrt{n}$
$s_{\text {pooled }}=\sqrt{\frac{\mathrm{s}_{\mathrm{a}}^{2}\left(N_{\mathrm{a}}-1\right)+\mathrm{s}_{\mathrm{b}}^{2}\left(N_{\mathrm{b}}-1\right)+\ldots \ldots . .}{N_{\mathrm{a}}+N_{\mathrm{b}}+\ldots \ldots .-N_{\text {sets of data }}}} \quad t_{\text {calculated }}=\frac{\left|\bar{x}_{a}-\bar{x}_{b}\right|}{s_{\text {pooled }}} \times \sqrt{\frac{\mathrm{n}_{\mathrm{a}} \times \mathrm{n}_{\mathrm{b}}}{\mathrm{n}_{\mathrm{a}}+\mathrm{n}_{\mathrm{b}}}}$
$\boldsymbol{\mu}=\overline{\mathrm{x}} \pm \frac{\mathrm{ts}}{\sqrt{\mathrm{n}}}$
Confidence

degrees Freedom	50\%	90\%	95\%	99\%
1	1.000	6.314	12.706	63.656
2	0.816	2.920	4.303	9.925
3	0.765	2.353	3.182	5.841
4	0.741	2.132	2.776	4.604
5	0.727	2.015	2.571	4.032
6	0.718	1.943	2.447	3.707
7	0.711	1.895	2.365	3.499
8	0.706	1.860	2.306	3.355
9	0.703	1.833	2.262	3.250
10	0.700	1.812	2.228	3.169
11	0.697	1.796	2.201	3.106
12	0.695	1.782	2.179	3.055
13	0.694	1.771	2.160	3.012
14	0.692	1.761	2.145	2.977
15	0.691	1.753	2.131	2.947
16	0.690	1.746	2.120	2.921
17	0.689	1.740	2.110	2.898
18	0.688	1.734	2.101	2.878
19	0.688	1.729	2.093	2.861
20	0.687	1.725	2.086	2.845
21	0.686	1.721	2.080	2.831
22	0.686	1.717	2.074	2.819
23	0.685	1.714	2.069	2.807
24	0.685	1.711	2.064	2.797
25	0.684	1.708	2.060	2.787
26	0.684	1.706	2.056	2.779
27	0.684	1.703	2.052	2.771
28	0.683	1.701	2.048	2.763
29	0.683	1.699	2.045	2.756
30	0.683	1.697	2.042	2.750
31	0.682	1.696	2.040	2.744
32	0.682	1.694	2.037	2.738
33	0.682	1.692	2.035	2.733
34	0.682	1.691	2.032	2.728
35	0.682	1.690	2.030	2.724

Critical Values for the Rejection Quotient

	$Q_{\text {crit }}$ (Reject if $Q_{\text {exp }}>Q_{\text {crit }}$		
N	90% Confidence	95% Confidence	99% Confidence
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

$N=$ number of observations

$$
\frac{S_{\text {samp }}}{C_{\mathrm{A}}}=\frac{S_{\text {spike }}}{C_{\mathrm{A}} \frac{V_{\mathrm{o}}}{V_{\mathrm{o}}+V_{\text {sdd }}}+C_{\text {std }} \frac{V_{\text {sd }}}{V_{\mathrm{o}}+V_{\text {sdd }}}}
$$

F(0.05, onum, odenom) for a Two-Tailed F-Test													
onum \Rightarrow σ den \Downarrow	1	2	3	4	5	6	7	8	9	10	15	20	∞
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	984.9	993.1	1018
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.43	39.45	39.50
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.25	14.17	13.90
4	12.22	10.65	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.444	8.657	8.560	8.257
5	10.01	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.428	6.329	6.015
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.269	5.168	4.894
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.568	4.467	4.142
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.259	4.101	3.999	3.670
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.769	3.667	3.333
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.522	3.419	3.080
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.644	3.588	3.526	3.330	3.226	2.883
12	6.544	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.177	3.073	2.725
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.053	2.948	2.596
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	2.949	2.844	2.487
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	2.862	2.756	2.395
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.788	2.681	2.316
17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.723	2.616	2.247
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.667	2.559	2.187
19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.617	2.509	2.133
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774	2.573	2.464	2.085
∞	5.024	3.689	3.116	2.786	2.567	2.408	2.288	2.192	2.114	2.048	1.833	1.708	1.000

Physical Constants

Gas constant

Boltzmann constant
Planck constant
Faraday constant
Avogadro constant
Speed of light in vacuum
Mole volume of an ideal gas

$$
\begin{aligned}
R & =8.315 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.315 \mathrm{kPa} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.315 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.206 \times 10^{-2} \mathrm{Latm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
k \quad & =1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
h \quad & =6.626 \times 10^{-34} \mathrm{~J} \mathrm{~K}^{-1} \\
F \quad & =9.649 \times 10^{4} \mathrm{C} \mathrm{~mol}^{-1} \\
\operatorname{Lor} N_{A} \quad & =6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
c & =2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
V_{m} & =22.41 \mathrm{~L} \mathrm{~mol}^{-1}(\text { at } 1 \mathrm{~atm} \text { and } 273.15 \mathrm{~K})
\end{aligned}
$$

$=22.71 \mathrm{~L} \mathrm{~mol}^{-1}$ (at 1 bar and $273.15 \mathrm{~K}^{\text {}}$)

Elementary charge
Rest mass of electron
Rest mass of proton
Rest mass of neutron
Permitivity of vacuum
e $\quad=1.602 \times 10^{-19} \mathrm{C}$
$m_{e} \quad=9.109 \times 10^{-31} \mathrm{~kg}$
$m_{p}=1.673 \times 10^{-27} \mathrm{~kg}$
$m_{n}=1.675 \times 10^{-27} \mathrm{~kg}$
$\varepsilon_{0} \quad=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}\left(\right.$ or $\left.\mathrm{Fm}^{-1}\right)$

Gravitational acceleration	$g \quad=9.807 \mathrm{~m} \mathrm{~s}^{-2}$
Conversion Factors	
1 W	$=1 \mathrm{~J} \mathrm{~s}^{-1}$
1 J	$=0.2390 \mathrm{cal}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{VC}$
	$=1 \mathrm{~Pa} \mathrm{~m}{ }^{3}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
1 cal	$=4.184 \mathrm{~J}$
1 eV	$=1.602 \times 10^{-19} \mathrm{~J}$
1 L atm	$=101.3 \mathrm{~J}$
1 atm	$\begin{aligned} = & 1.013 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}=1.013 \times 10^{5} \mathrm{~Pa}= \\ & 760 \mathrm{mmHg} \end{aligned}$
1 bar	$=1 \times 10^{5} \mathrm{~Pa}$
1 L	$=10^{-3} \mathrm{~m}^{3}=1 \mathrm{dm}^{3}$
1 Angstrom	$=1 \times 10^{-10} \mathrm{~m}=0.1 \mathrm{~nm}=100 \mathrm{pm}$
1 micron (μ)	$=10^{-6} \mathrm{~m}=1 \mu \mathrm{~m}$
1 Poise	$=0.1 \mathrm{Pas}=0.1 \mathrm{~N} \mathrm{sm}^{-2}$
1 ppm	$=1 \mu \mathrm{gg}^{-1}=1 \mathrm{mg} \mathrm{kg}^{-1}$
	$=1 \mathrm{mg} \mathrm{L}^{-1}$ (dilute aqueous solutions only)

					He 4.0026
5	6	7	8	9	10
B	C	\mathbf{N}	0	F	Ne
10.811	12.011	14.007	15.999	18.998	20.179
13	14	15	16	17	18
Al	Si	P	S	Cl	Ar
26.982	28.086	30.974	$32.06+$	35.453	39.948
31	32	33	34	35	36
Ga	Ge	As	Se	Br	$\mathbf{K r}$
69.723	72.61	74.922	78.96	79.90	83.80
49	50	51	52	53	54
In	Sn	Sb	Te	I	Xe
114.82	188.71	121.75	127.60	126.90	131.29
81	82	83	84	85	86
Tl	$\mathbf{P b}$	Bi	Po	At	Rn
204.38	207.2	208.98	(209)	(210)	(222)

					${ }^{63}$		65	66	67	88	69	70	${ }^{71}$
$\mathrm{Ce}_{1+0.12}$	$\underset{1+0.91}{ }$	$\underset{1+4,2+}{\text { Nd }}$	$\mathrm{Pm}_{1+6.92}$	$\mathrm{Sm}_{150.36}$	$\mathrm{Eu}_{151.97}$	$\underset{\text { Gd }}{\text { c/.25 }}$	$\mathrm{Tb}_{158.93}$	$\mathrm{Dy}_{162.50}$	Но 164.93	$\operatorname{Er}_{167.20}$	$\mathrm{Tm}_{168.93}$	Yb	$\mathbf{L u}_{17+97}$
90					${ }^{95}$	96	97	98	98	100	101	102	103
$\mathbf{T h}_{232.0+}$	$\xrightarrow[\text { Pa }]{\text { 231.04 }}$	U_{23803}	$\mathbf{N p}$	$\mathbf{P u}_{(2+1)}$	$\operatorname{Am}_{(23+4)}$	$\underset{(2+7)}{ }$	$\mathbf{B k}_{2+7}$	$\underset{(25 i)}{ } \mathbf{C f}$	$\underset{(252)}{\mathrm{Es}}$	$\mathbf{F m}_{(257)}$	Md (258)	$\underset{(259)}{\text { No }}$	$\underset{(260}{\mathbf{L r}}$

$\underset{1.0079}{\mathbf{H}}$	
3	
$\underset{6.9+1}{\mathbf{L i}}$	$\underset{9.012}{ }{ }^{\text {Be }}$
${ }^{11}$	12
Na 22980	$\underset{2+305}{\mathbf{M g}}$
19	20
37	38
Rb	Sr
85.47	87.6
55	56
Cs	Ba
132.91	137.3
87	88
Fr	Ra

